Министерство образования и науки Самарской области государственное автономное профессиональное образовательное учреждение Самарской области «Самарский колледж сервиса производственного оборудования имени Героя Российской Федерации имени Е.В. Золотухина»

Дырнаева Е.В.

Рабочая тетрадь по физике для всех специальностей СПО часть 1

Пояснительная записка

Рабочая тетрадь по дисциплине «Физика» разработана на основе федерального государственного образовательного стандарта среднего (полного) общего образования и примерной, рабочей программ общеобразовательной учебной дисциплины для профессиональных образовательных организаций.

Данная рабочая тетрадь предназначена для студентов 1 курса всех специальностей и профессий для работы под руководством преподавателя.

Рабочая тетрадь позволяет более рационально распределить познавательные задания и виды учебной работы, акцентировать внимание на учебной информации, недостаточно представленной в учебниках, учесть особенности восприятия и усвоения учебного материала, предложить варианты текущего контроля в процессе изучения нового материала, а так же предназначена для заполнения студентами основных понятий, определений, формул в течение года.

Внедрение рабочей тетради в практику учебного процесса поможет:

- более прочному усвоению теоретических знаний;
- продолжению развития мышления у студентов;
- приобретению практических умений и навыков решения не только типовых, но и развивающих, творческих заданий;
- контролю за ходом обучения студентов конкретной учебной дисциплине;
- повторению и закреплению пройденного материала;
- проведению индивидуальной работы;
- как средство текущего контроля, самоконтроля.

Данная форма организации учебной деятельности позволяет увидеть студентам перспективы профессионально-личностного роста, помогает оценить собственные возможности, мотивирует на приобретение качественных знаний, умений по выбранному направлению, формирует профессионально-личностные качества, общекультурные компетенции, необходимые для решения задач профессиональной деятельности и успешной социализации.В рабочей тетради представлены задания по всем разделам дисциплины и предназначены для текущего контроля знаний студентов. При выполнении заданий необходимо занести ответы в тетради студентов.

Критерии оценки:

Оценка **«отлично»** ставится, если количество верных ответов составляет не менее 90% от общего числа данных ответов.

Оценка «**хорошо**» - от 75 до 90%.

Оценка **«удовлетворительно»** - от 50 до 74%.

Оценка **«неудовлетворительно»** - менее 50% правильных ответов.

Введение

1.1. Физика – фундаментальная наука о природе

- 1. Дайте определения терминам: «наука, природа, физика, ученый».______
- 2. В какой последовательности происходит процесс научного познания мира? Предложите схему процесса познания мира.
- 3. С чего начинается научный метод познания?

1.2. Физические законы. Границы применимости физических законов.

- 1. Дайте определения терминам: «модель, моделирование, закон, физический закон»
- 2. Перечислите фундаментальные физические законы:

3. Перечислите частные физические законы:

4. Запишите условия существования закона всемирного тяготения:

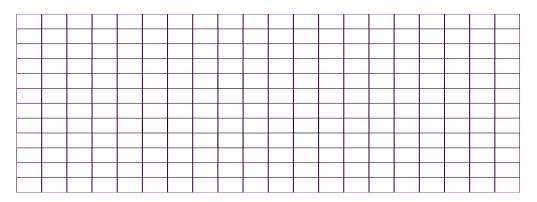
1.3. Физическая величина

1. Определите по рисункам погрешность приборов и запишите значение величин, которые фиксируют приборы:

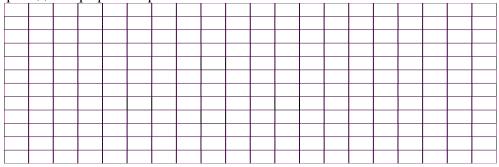
Раздел 1. Механика

Тема 1.1 Кинематика

1.1.1. Механическое движение

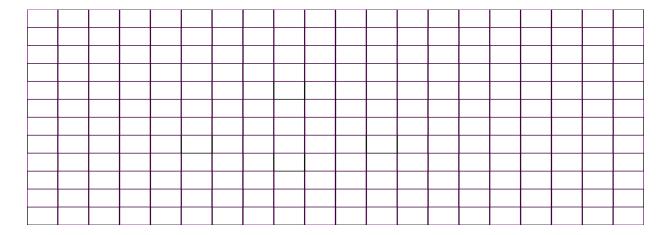

1. Ответить на вопросы используя учебник, а также ресурсы Интернет:

- 1. Что называется материальной точкой?
- 2. Что называется механическим движением?
- 3. Что называется системой отсчета?
- 4. Что такое траектория движения? Путь?
- 5. Что называется радиус-вектором?

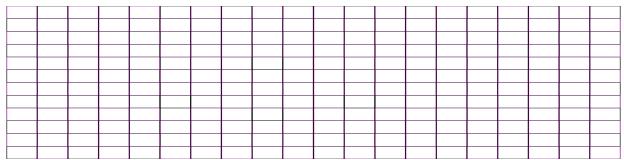

1.1.2. Равномерное прямолинейное движение

Ответить на вопросы:

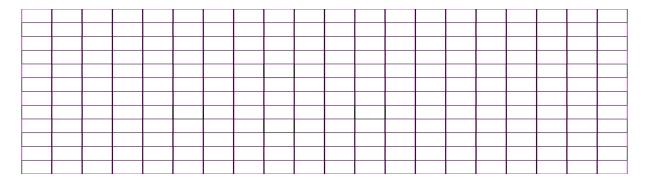
- 1. Какое движение называется равномерным?_____
- 2. Уравнения равномерного движения_____
- 3. Какое движение называется равномерным?_____
- 4. Запишите формулу пути при равномерном движении.
- 5. Запишите формулу скорости при равномерном движении ______
- 6. Приведите график пути:

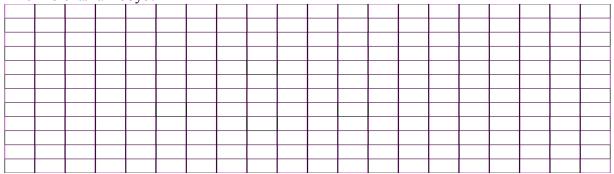


7. Приведите график скорости:



Решите задачи


1. В начальный момент времени тело находилось в точке с координатой 6 м, а через 2 мин от начала движения — в точке с координатой 95 м. Определите скорость тела и его перемещение.


2. Движение двух тел задано уравнениями $x_1 = 20 - 8t$ и $x_2 = -14 + 10t$ (время измеряется в секундах, координата — в метрах). Определите для каждого тела начальную координату, проекцию скорости, направление скорости. Вычислите время и место встречи тел.

3. Туристы на байдарке со скоростью 12 км/ч и рыбак на резиновой лодке со скоростью 3 м/с равномерно переплывают озеро шириной 490 м. Во сколько раз отличаются промежутки времени, затраченные на их переправу?

4. Автобус проехал равномерно путь 150 км за промежуток времени 3 ч. С какой скоростью ехал автобус?

1.1.3. Ускорение. Равнопеременное прямолинейное движение Ответить на вопросы:

- 1. Какое движение называется равнопеременным?
- 2. На какие виды разделяется равнопеременное движение?
- 3. Уравнения равнопеременного движения.
- 4. Начертите графики зависимости скорости от времени для равнопеременного движения для двух значений ускорений.
- 5. Дайте определение ускорения точки.
- 6. Запишите формулы для пути, скорости и ускорения при равнопеременном движении.
- 7. Запишите единицы измерения: S, U, a, t.

Работа с таблицей

Заполните приведенную таблицу формулами к каждой величине.

Равномерное и равноускоренное движения

		Равноуск	ренное
Вид движения	Равномерное	α _χ > 0	α _χ < 0
П <u>остоянная</u> величина			
Формула скорости			
Формула ускорения			
Формула перемещения			
Формула пути			
Формула координаты			

s = ut
a = const
u = const
$\alpha = 0$
$u_x = \frac{\Delta r_x}{\Delta t}$
$\Delta r_x = u_x t$
$a_{x} = \frac{v_{x} - v_{0x}}{\Delta t}$
$u_x = u_{\mathcal{C}x} + a_x t$
$s = u_{\mathcal{C}x} t + \frac{a_x t^2}{2}$
$\Delta r_x = u_{\mathcal{C}x} t + \frac{\alpha_x t^2}{2}$
$x = x_0 + u_x t$
$x = \alpha_C + u_{Cx} t + \frac{\alpha_x t}{2}$

Решите задачи

- 1. Автомобиль, двигаясь с ускорением -0,6 м/с², уменьшил свою скорость от 54 до 18 км/ч. Сколько времени ему для этого понадобилось?
- 2. При подходе к станции поезд начал торможение, имея начальную скорость 92 км/ч и ускорение $0,1 \text{ м/c}^2$. Определите тормозной путь поезда, если торможение длилось 0,5 мин.
- 3. Движение тела задано уравнением x(t) = 4+10t-0,5t². Определите: 1) начальную координату тела; 2) проекцию скорости тела; 3) проекцию ускорения; 4) вид движения (разгоняется тело или тормозит); 5) запишите уравнение проекции скорости; 6) определите значение координаты и скорости в момент времени t = 5 с.
- 4. Вагон движется равноускорено с ускорением 0,4 м/с². Начальная скорость вагона равна 36 км/ч. Через сколько времени вагон остановится? Постройте график зависимости скорости от времени.
- 5. Поезд, идущий со скоростью $v_0 = 36$ км/ч, начинает двигаться равноускорено и проходит путь S = 700 м, имея в конце этого участка скорость v = 46 км/ч. Определить ускорение поезда и время его ускоренного движения.

1.1.4. Равномерное движение по окружности

Ответить на вопросы:

- 1. Что называется угловой скоростью? Как направлен вектор угловой скорости?
- 2. Какова связь между угловой скоростью ω и линейной скоростью υ?
- 3. Что называется угловым ускорением?
- 4. Что характеризует нормальное ускорение?
- 5. Формула нормального ускорения
- 6. Что характеризует тангенциальное ускорение?
- 7. Формула тангенциального ускорения
- 8. Связь между линейными и угловыми величинами.

Задание по таблице: заполните таблицу.

Название величины	Обозначение	Определение	Формула	Единица измерения
Период вращения				
Частота вращения				
Угловая скорость				
Линейная скорость				
Дентростреми тельное ускорение				

Решение залач

- 1. Какова линейная скорость тела, движущегося по окружности радиусом 45 м с ускорением 1.5 m/c^2 ?
- 2. Вентилятор вращается с постоянной скоростью и за две минуты совершает 2500 оборотов. Определите частоту вращения вентилятора, период обращения и линейную скорость точки, расположенной на краю лопасти вентилятора на расстоянии 20 см от оси вращения.
- 3. Во сколько раз линейная скорость точки обода колеса радиусом 10 см больше линейной скорости точки, расположенной на 6 см ближе к оси вращения колеса?
- 4. Велосипедист ехал со скоростью 25 км/ч. Сколько оборотов совершило колесо диаметром 75 см за 20 мин?
- 5. Шкив радиусом 30 см имеет частоту вращения 180 об/мин. Определите частоту, период обращения, угловую скорость шкива и центростремительное ускорение точек шкива, наиболее удаленных от оси вращения.

1.1.5. Свободное падение

Ответить на вопросы:

- 1. Дайте определение свободного падения.
- 2. Чему равно ускорение свободного падения в поле силы тяжести Земли?
- 3. Чему равно ускорение свободного падения?
- 4. Запишите формулу, по которой находится ускорение свободного падения.
- 5. От чего зависит ускорение свободного падения?
- 6. Запишите формулы закона свободного падения.
- 7. Какие виды движения можете написать, где встречается ускорение свободного падения?

Задание по таблице

Используя формулу в задании найдите ускорения свободного падения на разных высотах.

Решение задач

- 1. С балкона 8-го этажа здания вертикально вниз бросили тело, которое упало на землю через 3 с и при падении имело скорость 25 м/с. Какова была начальная скорость тела?
- 2. Какой высоты достигнет мяч, брошенный вертикально вверх со скоростью 10 м/с? Сколько времени для этого ему понадобится?
- 3. Мяч бросили вертикально вверх со скоростью 10 м/с. Через какое время он будет находиться на высоте 15 м?
- 4. Через сколько секунд мяч будет на высоте 26 м, если его бросить вертикально вверх с начальной скоростью 30 м/с?
- 5. С воздушного шара, поднимающегося со скоростью $v_0 = 2$ м/с, падает камень и достигает земли спустя t = 16 с. На какой высоте h находился шар в момент сбрасывания камня? С какой скоростью v камень упал на землю?

Тема 1.2. Динамика

1.2.1. Первый закон Ньютона.

Ответить на вопросы

- 1. Дайте определения следующим понятиям: «сила, масса, инерция, инертность, импульс».
- 2. Запишите формулировку первого закона Ньютона.
- 3. Запишите математическую формулу первого закона Ньютона.
- 4. Зарисуйте действие первого закона Ньютона.

Задание по таблице

Заполнить таблицу используя учебник и ресурсы Интернета

	I Закон Ньютона
Формулировка	
Математическая запись	
Рисунок	
Описываемое явление	
Особенности	
Примеры проявления	

- 1. Система отсчета жестко связана с лифтом. В каких из приведенных ниже случаях систему отсчета можно считать инерциальной, если лифт:
- а) свободно падает;

- б) движется равномерно;
- в) движется ускоренно вверх.
- 2. Система отсчета связана с автомобилем. Будет ли она инерциальной, если автомобиль движется:
- а) ускоренно по горизонтальному шоссе;
- б) равномерно, поворачивая на улицу, расположенную под прямым углом;
- в) равномерно в гору?
- 3. Почему:
- а) нельзя переходить дорогу перед близко движущимся транспортом;
- б) убегающий часто спасается от преследующего тем, что делает резкие движения в сторону как раз в те моменты, когда тот готов его схватить;
- в) стоящему в движущейся лодке человеку трудно сохранить прежнее положение, если лодка внезапно останавливается?
- 4. Одна инерциальная система отсчета известна. Как по движению другой системы отсчета установить, является она инерциальной или нет?

1.2.2. Второй закон Ньютона.

Ответить на вопросы

- 1. Справедлив ли второй закон Ньютона для произвольного тела или только для материальной точки?
- 2. При каких условиях материальная точка движется равномерно и прямолинейно?
- 3. Какие условия необходимы для того, чтобы тело двигалось с постоянным ускорением?
- 4. Сформулируйте второй закон Ньютона.
- 5. Запишите математическую формулу второго закона Ньютона.
- 6. Запишите основное уравнение динамики.
- 7. Запишите второй закон Ньютона через импульс тела.

Задание по таблице

Заполните таблицу, где указан второй закон Ньютона.

	I Закон Ньютона	II Закон Ньютона	III Закон Ньютона
Формулировка			
Математическая запись			
Рисунок			
Описываемое явление			
Особенности			
Примеры проявления			

- 1. Какое ускорение приобретет тело массой 600 г под действием силы 0,2 Н?
- 2. Сила 30 H сообщает телу ускорение 0,5 м/с. Какая сила сообщит тому же телу ускорение 3 м/с 2 ?
- 3. Какую скорость приобретает тело массой 4 кг под действием силы, равной 9 H, по истечении 7 с?
- 4. Сколько времени потребуется автомобилю массой 800 кг, чтобы разогнаться из состояния покоя до скорости 72 км/ч, если сила тяги двигателя 1,5 кН?
- 5. Поезд массой 600 т, трогаясь с места, через 30 с набрал скорость 18 км/ч. Определите силу тяги.
- 6. Самолет массой 15 т, пройдя по взлетной полосе путь 600 м, приобретает необходимую для отрыва от поверхности Земли скорость 146 км/ч. Считая движение равноускоренным, определите время разгона, ускорение и силу, сообщающую самолету это ускорение.

1.2.3. Третий закон Ньютона

Ответить на вопросы

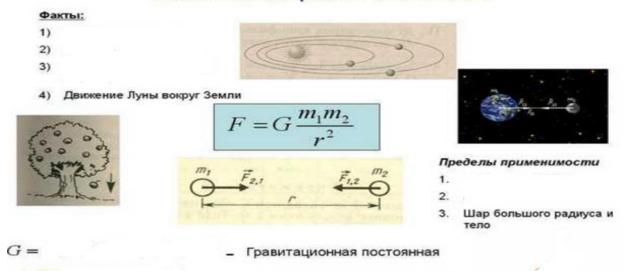
- 1. Сформулировать третий закон Ньютона?
- В чем заключены особенности этого закона?
- 3. Привести пример выполнения III закона.
- 4. Почему в III законе силы не уравновешивают друг друга?
- Почему при прыжке в момент приземления нужно сгибать колени?
- 6. Тело брошено под углом к горизонту. Куда направлено ускорение тела, если сопротивление воздуха не учитывать?

Задание по таблице: заполните таблицу, где указан третий закон Ньютона

Формулировка	I Закон Ньютона	II Закон Ньютона	III Закон Ньютона
Математическая запись			
Рисунок		16	
Описываемое явление			
Особенности			
Примеры проявления			

Решение задач

- 1. Два тела массами $m_1=1~\rm kr$ и $m_2=2~\rm kr$, находящиеся на гладкой горизонтальной поверхности, связаны нерастяжимой нитью. Ко второму телу в горизонтальном направлении приложена сила $F=10~\rm H$. Найти ускорение а, с которым движутся оба тела, и силу T натяжения нити.
- 2. О ветровое стекло движущегося автомобиля ударился комар. Сравнить силы, действующие на комара и автомобиль во время удара.
- 3. Почему лодка не сдвигается с места, когда человек, находящийся в ней, давит на борт, и приходит в движение, если человек выйдет из лодки и будет толкать ее с такой же силой?
- 4. Барон Мюнхгаузен утверждал, что вытащил сам себя из болота за волосы. Обосновать невозможность этого.


1.2.4. Закон всемирного тяготения.

Ответить на вопросы

- 1. Кто впервые сформулировал закон всемирного тяготения?
- 2. Закон всемирного тяготения справедлив......
- 3. Сформулируйте закон всемирного тяготения.
- 4. Запишите формулу закона всемирного тяготения.
- 5. Применение закона всемирного тяготения.
- 6. Условия существования закона всемирного тяготения.

Задание по таблице: заполните пропущенные места в таблице.

Закон всемирного тяготения

Решение задач

- 1. На каком расстоянии друг от друга находятся два одинаковых шара массами по 30 т, если сила тяготения между ними $6,67 \cdot 10^{-5}$ H?
- 2. Космический корабль массой 10 т приближается к орбитальной станции массой 40 т на расстояние 200 м. Найдите силу их взаимного притяжения.
- 3. Расстояние между двумя вагонетками 100 метров, масса каждой 450 кг. Рассчитайте с какой силой они притягиваются друг к другу.
- 4. Найдете массу двух одинаковых шаров, если известно, что они находятся на расстоянии 1,5 метра друг от друга и притягиваются с силой равной $0.667 \cdot 10^{-7}$ H.
- 5. Определите, какая из сил притяжения больше: сила между Землей и Луной или сила между Луной и Солнцем

1.2.5. Сила тяжести. Вес тела.

Ответить на вопросы

- 1. По какой формуле можно вычислить силу тяжести?
- 2. По какой формуле можно рассчитать вес тела?
- 3. Если тело и опора неподвижны или движутся равномерно и прямолинейно, то... по своему числовому значению равен ... Вставь пропущенные слова
- 4. Сила тяжести приложена......
- Вес тела приложен......
- 6. Отличие веса тела от силы тяжести?
- 7. Что такое перегрузка?
- 8. Когда наступает невесомость? В чем она проявляется?

Задание по таблице

Заполните таблицу используя подсказки:

название	обозна чение	ед измер.	направление	рис	формула	прим	ечание
сила тяжести			6 -				
сила упругости			\rightarrow -				
вес			<u> </u>				
Ньютон	жет	формац прил тикальн	ожена к телу спра н	ведливо е изменя	Lancate Control of the Control of th	P=mg	Н, ньютон F=mg
_{Гупр} Р	249	вниз	Ньютон	при	подвесу	ALIM	

Решение задач

- 1. Определите силу тяжести, действующую: а) на человека массой m=100 кг; б) на автомобиль массой M=1,5 т; в) на монеты массой m=5 г.
- 2. Какой вес имеет вода объемом $3 \, \text{дм}^3$?
- 3. Вес человека в неподвижном лифте равен 500 Н. Когда его измерили в движущемся лифте, он оказался равным: а) 440 H; б) 620 Н. Определите ускорение, с которым двигался лифт.
- 4. Вес тела в лифте, движущемся с ускорением, направленным: а) вверх и равным 4 м/ c^2 ; б) вниз и равным 4 м/ c^2 , оказался равным 100 Н. Какова масса этого тела?
- 5. Автомобиль массой 2 т, проходящий по выпуклому мосту радиусом 40 м, имеет вес 15 кН. С какой скоростью движется автомобиль?

1.2.6. Силы в механике (сила упругости, сила трения)

Ответить на вопросы

- 1. Что такое деформация? Какую деформацию называют упругой, а какую пластичной? Назовите виды деформаций.
- 2. Что такое сила упругости? Какова природа этой силы?
- 3. Как формулируется и записывается закон Гука?
- 4. Что такое жесткость? Какова единица жесткости в системе СИ?
- 5. Какие силы называют силами трения?
- 6. Назовите виды трения. Когда они возникают?
- 7. Дайте физическую суть трения покоя и силы трения скольжения. Напишите формулу закона, определяющего модуль силы трения покоя.
- 8. Охарактеризуйте трение качения. Объясните природу возникновения силы трения качения.

Задание по таблице:

Заполните таблицу						
сила	Причина возникнов ения	формула	Единица измерения	Точка приложени я и направлен ие	Прибор Для измерения	
тяжести						
упругости						
трения						
Вес тела						

Решение задач

- 1. Какие силы надо приложить к концам проволоки, жесткость которой 200 кН/м, чтобы растянуть ее на 2 мм?
- 2. На сколько удлинится рыболовная леска жесткостью 0,5 кН/м при поднятии вертикально вверх рыбы массой 200 г?
- 3. Брусок массой 5 кг тянут по поверхности стола, взявшись за кольцо динамометра. При этом ускорение тела равно 0,5 м/с². Жёсткость пружины равна 200 Н/м Определите растяжение пружины. Коэффициент трения бруска о стол 0,05.
- 4. Шай
 - ба, пущенная по ледовой площадке со скоростью 36 км/ч, проходит до остановки 40 м. Каков коэффициент трения между шайбой и льдом?
- 5. На санки массой 8 кг, скользящие по горизонтальной дороге действует сила трения 8 Н. Определите коэффициент трения между полозьями и дорогой.

Тема 1.3. Законы сохранения

1.3.1. Закон сохранения импульса.

Ответить на вопросы

- 1. Чему равен импульс тела?
- 2. Как изменяется импульс тела при взаимодействии?
- 3. Что такое замкнутая система тел?
- 4. Как формулируется закон сохранения импульса?
- 5. Следствием каких законов динамики является закон сохранения импульса?
- 6. В каких случаях можно использовать закон сохранения импульса для незамкнутых систем? Приведите примеры такого использования.
- 7. Почему при ударе возникают большие силы?

Задание по таблице: заполните таблицу

Импульс тела-	-векторная величина, равная произведению массы тела на его скорость.	
Импульс силы-	- векторная величина, равная произведению силы, действующей на тело, на время её действия. Изменение импульса тела равно импульсу силы, действующей на тело.	
Закон сохранения импульса системы тел	Если сумма внешних сил равна нулю, то импульс изолированной системы (на которую не действуют внешние силы) сохраняется.	
Реактивное движение-	движение тела, возникающее при отделении некоторой его части с определённой скоростью.	M_{\circ} V_{\circ} V_{\circ}

Решение залач

- 1. Определите массу автомобиля, имеющего импульс $2,5\cdot10^4$ кг·м/с и движущегося со скоростью 90 км/ч.
- 2. Тележка массой 40 кг движется со скоростью 4 м/с навстречу тележке массой 60 кг, движущейся со скоростью 2 м/с. После неупругого соударения тележки движутся вместе. В каком направлении и с какой скоростью будут двигаться тележки?
- 3. Шар массой 2 кг движется со скоростью 4 м/с и сталкивается с неподвижным шаром массой 6 кг. Какова будет скорость и направление движения первого шара после упругого удара, если скорость неподвижного шара после удара окажется равной 1 м/с?
- 4. С тележки массой 10 кг, которая движется по горизонтальной прямой со скоростью 1 м/с, спрыгивает мальчик массой 40 кг со скоростью 3 м/с в направлении противоположном направлению движения тележки. Определить скорость тележки сразу после прыжка мальчика.
- 5. На тележку массой 6 кг, движущуюся со скоростью 2 м/с, сверху вертикально вниз падает кирпич массой 2 кг. Какова будет скорость тележки сразу после падения кирпича?

1.3.2. Работа силы. Работа потенциальных сил.

Ответить на вопросы

- Сформулируйте определение работы?
- Какой буквой обозначается?
- В каких единицах измеряется?
- При каких условиях работа силы положительная?
 отрицательная? равна нулю?
- Какие силы называются потенциальными?
 Приведите примеры?
- Чему равна работа, совершаемая силой тяжести?

Задание по таблице

№	Направление действия силы и перемещения тела	Формула расчета работы	Пример
١.	\overrightarrow{s} \overrightarrow{F}		Действие силы тяги
2	\vec{s}		Действие силы реакции опоры
3	\vec{s}	4	Действие силы трения
4	$\downarrow_{\vec{F}}$		Действие силы тяжести

Решение задач

- 1. Какую работу надо совершить, чтобы положить гантель весом 200 Н на стол высотой 60 см?
- 2. Какую работу совершает сила тяжести при падении камня массой 0,6 кг с высоты 14 м?
- 3. При равномерном подъеме из шахты нагруженной углем бадьи массой 11 т произведена работа 6200 кДж. Какова глубина шахты?
- 4. Давление воды в цилиндре нагнетательного насоса $1500 \text{ к}\Pi a$. Чему равна работа при перемещении поршня площадью 500 см^2 на расстояние 50 см.

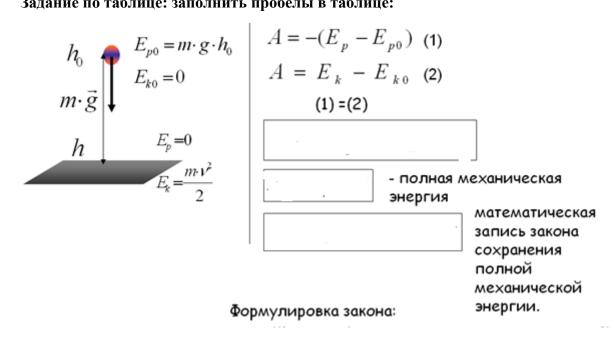
1.3.3. Мощность. Энергия

Ответить на вопросы

- 1. Что такое энергия?
- 2. Какие виды энергий существуют?
- 3. Какую энергию называют потенциальной?
- 4. По какой формуле можно вычислить потенциальную энергию?
- 5. От каких величин зависит потенциальная энергия тела?
- 6. В каком случае потенциальная энергия тела равна нулю?

Задание по таблице: заполнить пустые ячейки таблицы

план о физической величине	кинетическая энергия	потенциальная энергия	Полная механическая энергия
обозначение	E _k	E,	E
чем обусловлена энергия	энергия движения тел	энергия взаимодействия тел	
формула			
единица измерения	Дж	Дж	Дж
Формулировка закона сохранения энергии			
Математическая запись закона	_	_	


- 1. Тело массой 500 г находится на высоте 2 м. Какова его потенциальная энергия?
- 2. Тело массой 200 г движется со скоростью 2 м/с. Какова его кинетическая энергия?
- 3. Найдите потенциальную и кинетическую энергию тела массой 3 кг на высоте 2 м от поверхности земли. Известно, что тело падало с высоты 5 м.
- 4. Ястреб, масса которого 0,4 кг, воздушным потоком поднят на высоту 70м. Определите работу силы, поднявшей птицу.
- 5. Определите силу сопротивления, преодолеваемую резцом станка, если на пути 0,5 м работа равна 1 кДж.
- 6. Камень массой 0,5 кг, соскользнув по наклонной плоскости с высоты 3 м, у основания приобрёл скорость 6 м/с. Определить работу силы трения.
- 7. Определите среднюю мощность насоса, который, преодолевая силу тяжести, подаёт воду объёмом $4,5 \text{ м}^3$ на высоту 5 м за 5 мин.
- 8. Мощность продольно-строгального станка равна 7, 36 Вт. Найдите силу сопротивления резанию, если скорость резания равна 50 см/с.
- 9. С помощью неподвижного блока груз массой 100 кг поднят на высоту 5 м. Определите совершённую при этом работу, если коэффициент полезного действия равен 70 %.

1.3.4. Закон сохранения механической энергии.

Ответить на вопросы

- 1. По какой формуле определяют потенциальную энергию тела, находящегося в поле тяготения земли?
- 2. По какой формуле определяют потенциальную энергию упруго деформированного
- 3. Как называют силы, работа которых не зависит от траектории движения тела? Как называются поля этих сил?
- 4. Сформулировать закон сохранения и превращения механической энергии.
- Какая система называется замкнутая изолированная?
- 6. Что называют полной механической энергией тела?
- 7. Что необходимо учитывать при вычислении потенциальной энергии?

Задание по таблице: заполнить пробелы в таблице:

- 1. Тело массой 500 г свободно падает с высоты 15 м из состояния покоя. Чему равна потенциальная энергия тела? Чему равна скорость перед ударом о землю?
- 2. Кинетическая энергия тела в момент бросания равна 220 Дж. Определите, на какую максимальную высоту может подняться тело, если его масса равна 300 г.
- 3. Мяч массой 3 кг брошен вертикально вверх со скоростью 54 км/ч. Чему равна максимальная потенциальная энергия и на какую высоту поднимется мяч?
- 4. Максимальная высота, на которую поднимается тело массой 1 кг, подброшенное вертикально вверх, составляет 20 м. Найдите, чему была равна кинетическая энергия сразу же после броска.

Итоговое занятие:

Контрольная работа по теме: «Механика»

1 вариант Часть 1 «на 3»

- 1. Перемещение это:
- 1) векторная величина; 2) скалярная величина; 3) может быть и векторной и скалярной величиной; 4) правильного ответа нет.
- 2. Перемещением движущейся точки называют...
- 1) ...длину траектории; 2) пройденное расстояние от начальной точки траектории до конечной; 3)... направленный отрезок прямой, соединяющий начальное положение точки с его конечным; 4) ...линию, которую описывает точка в заданной системе отсчета.
- 3. Ускорение это:
- 1) физическая величина, равная отношению изменения скорости к тому промежутку времени, за который это изменение произошло; 2) физическая величина, равная отношению изменения скорости к тому физически малому промежутку времени, за которое это изменение произошло; 3) физическая величина, равная отношению перемещения ко времени.
- 4. Локомотив разгоняется до скорости 20м/с, двигаясь по прямой с ускорением 5м/с². Начальная скорость его равна нулю. Сколько времени длится разгон?
- 1) 0,25c; 2) 2c; 3) 100 c; 4) 4c.
- 5. Какие силы в механике сохраняют свое значение при переходе из одной инерциальной системы в другую?
- 1) силы тяготения, трения, упругости; 2) только сила тяготения; 3) только сила упругости;
- 4) только сила трения.
- 6. Равнодействующая сила это:
- 1) сила, действие которой заменяет действие всех сил, действующих на тело; 2) сила, заменяющая действие сил, с которыми взаимодействуют тела.
- 7.Согласно закону Гука, сила натяжения пружины при растягивании прямо пропорциональна
- 1) ее длине в свободном состоянии; 2) ее длине в натянутом состоянии; 3) разнице между длиной в натянутом и свободном состояниях; 4) сумме длин в натянутом и свободном состояниях.
- 8. Спортсмен совершает прыжок с шестом. Сила тяжести действует на спортсмена
- 1)только в течение того времени, когда он соприкасается с поверхностью Земли; 2) только в течение того времени, когда он сгибает шест в начале прыжка; 3) только в течение того времени, когда он падает вниз после преодоления планки; 4) во всех этих случаях.
- 9. Вес тела:
- 1) свойство тела; 2) физическая величина; 3) физическое явление.
- 10.Сила тяготения это сила обусловленная:
- 1) гравитационным взаимодействием; 2) электромагнитным взаимодействием; 3) и гравитационным, и электромагнитным взаимодействием.
- 11. Товарный вагон, движущийся по горизонтальному пути с небольшой скоростью, сталкивается с другим вагоном и останавливается. При этом пружина буфера сжимается. Какое из перечисленных ниже преобразований энергии наряду с другими происходит в этом процессе?

- 1) кинетическая энергия вагона преобразуется в потенциальную энергию пружины; 2) кинетическая энергия вагона преобразуется в его потенциальную энергию; 3) потенциальная энергия пружины преобразуется в ее кинетическую энергию; 4) внутренняя энергия пружины преобразуется в кинетическую энергию вагона.
- 12. Кинетическая энергия тела 8 Дж, а величина импульса 4 Н·с, Масса тела равна...
- 1)0,5кг; 2) 1 кг; 3) 2 кг; 4) 32 кг.

Часть 2 «на 4», на «5» решить обе части

- 1. Свободно падающее тело прошло последние 30 м за 0,5 с. Найдите высоту падения.
- 2. Определите удлинение пружины, если на нее действует сила 10 H, а коэффициент жесткости 500 H/м.
- 3. Автомобиль массой 4 т движется в гору с ускорением 0.2 м/c^2 . Найдите силу тяги, если уклон равен 0.02, а коэффициент сопротивления 0.04.

2 вариант Часть 1 «на 3»

- 1. Модуль перемещения при криволинейном движении в одном направлении:
- 1) равен пройденному пути; 2) больше пройденного пути; 3) меньше пройденного пути; 4) правильного ответа нет.
- 2. Средняя скорость характеризует:
- 1) равномерное движение; 2) неравномерное движение;
- 3. Проекция ускорения на координатную ось может быть:
- 1) только положительной; 2) только отрицательной; 3) и положительной, и отрицательной, и равной нулю.
- 4. При подходе к станции поезд уменьшил скорость на 10м/с в течение 20с. С каким ускорением двигался поезд?
- $(1) 0.5 \text{ m/c}^2$; 2) 2 m/c^2 ; 3) 0.5 m/c^2 ; 4) 2 m/c^2 .
- 5. В инерциальной системе отсчета F сообщает телу массой m ускорение a. Как изменится ускорение тела, если массу тела и действующую на него силу уменьшить в 2 раза?
- 1) увеличится в 4 раза; 2) уменьшится в 4 раза; 3) уменьшится в 8 раз; 4) не изменится.
- 6. после открытия парашюта парашютист под действием силы тяжести и силы сопротивления воздуха двигался вниз с ускорением, направленным вверх. Как станет двигаться парашютист, когда при достижении некоторого значения скорости равнодействующая силы тяжести и силы сопротивления воздуха окажется равной нулю?
- 1) равномерно и прямолинейно вверх; 2) равномерно и прямолинейно вниз; 3) с ускорением свободного падения вниз; 4) будет неподвижным.
- 7. Закон инерции открыл
- 1) Демокрит; 2) Аристотель; 3) Галилей; 4) Ньютон.
- 8. Импульс системы, состоящей из нескольких материальных точек, равен:
- 1)сумме модулей импульсов всех ее материальных точек; 2) векторной сумме импульсов всех ее материальных точек; 3) импульсы нельзя складывать.
- 9. Утверждение о том, что импульсы замкнутой системы тел не изменяются, является:
- 1) необоснованным; 2) физическим законом; 3) вымыслом; 4) затрудняюсь что-либо сказать по этому поводу.
- 10. Мальчик массой 50кг, стоя на очень гладком льду, бросает груз массой 8кг под углом 60^0 к горизонту со скоростью 5м/с. Какую скорость приобретет мальчик?
- 1)5.8 m/c; 2) 1.36 m/c; 3) 0.8 m/c; 4) 0.4 m/c.
- 11. Навстречу друг другу летят шарики из пластилина. Модули их импульсов равны соответственно 0,03кгм/с и 0,04 кгм/с. Столкнувшись, шарики слипаются. Импульс слипшихся шариков равен
- 1). $01 \text{kg} \cdot \text{m/c}$; 2). $00351 \text{kg} \cdot \text{m/c}$; 3). $0.05 \text{kg} \cdot \text{m/c}$; 4) $0.07 \text{kg} \cdot \text{m/c}$;
- 12. Тело движется по прямой. Под действием постоянной силы величиной 4 H за 2 с импульс тела увеличился и стал равен $20 \mathrm{kr} \cdot \mathrm{m/c}$. Первоначальный импульс тела равен
- 1) 4κΓ·м/c; 2) 8κΓ·м/c; 3) 12κΓ·м/c; 4) 28κΓ·м/c.

Часть 2 «на 4», на «5» решить обе части

1. Тело падает с высоты 100 м без начальной скорости. За какое время тело проходит первый и последний метры своего пути?

- 2. Коэффициент жесткости резинового жгута 40 Н/м. Каков коэффициент жесткости того же жгута, сложенного пополам?
- 3. Какую скорость относительно Земли приобретает ракета массой 600 г, если пороховые газы массой 15 г вылетают из нее со скоростью 800 м/с?

Раздел 2. Основы молекулярной физики и термодинамики

Тема 2.1. Основы молекулярно-кинетической теории

1.3.1. Основные положения молекулярно-кинетической теории

Ответить на вопросы

- 1. Один моль это количество вещества.....
- 2. Броуновское движение это......
- 3. В одном моле любого вещества содержится одно и то же число атомов или молекул. Это число называют постоянной...
- 4. Газы сжимаются значительно легче, чем жидкости или твёрдые тела, потому что.....

Задание по таблице: заполнить таблицу

No.	Название формулы (закона, правила)	Формулировка закона (правила)	Формула	Единица измере: ния (в СИ)
1	Относительная молекулярная масса	Относительная молекулярная (или атомная масса вещества M_r — отношение массы молекулы (или атома) m_θ данного вещества к $\frac{1}{2}$ массы углерода $m_{\theta C}$	ļ —	
2	Постоянная Авогадро	Постоянная Авогадро – это величина, равная числу молекул в одном моле; определяется числом молекул в 12 г углерода		
3	Молярная масса	Молярная масса M вещества – это масса вещества, взятого в количестве одного моля и равная произведению массы молекулы m_{θ} на постоянную Авогадро N_A		
4	Количество вещества	Количество вещества V равно отношению: а) числа молекул N в данном теле к постоянной Авогадро N_A , т. е к числу молекул в 1 моле вещества; б) массы вещества m к его молярной массе M		
5	Число молекул (атомов)	Число молекул N любого количества вещества массой m и молярной массой M равно:		
6	Концентрация молекул	Концентрация молекул – это число молекул в единице объёма, занимаемого этими молекулами, - определяется, как	7 3	4.

Решение задач

- 1. В баллоне находится 20 моль газа. Сколько молекул газа находится
- 2. Определить массу молекулы кислорода.
- 3. Сколько молекул содержится в 5 кг кислорода?
- 4. Сколько молекул содержится в 1 л воды?
- 5. Во сколько раз плотность метана (CH4) отличается от плотности кислорода (O2) при прочих равных условиях?

2.1.2. Строение газообразных, жидких и твердых тел.

Ответить на вопросы

- 1. Сколько существует агрегатных состояний вещества?
- 2. Назовите мельчайшую частицу вещества, сохраняющую свойства этого вещества
- 3. Расположите состояния тел в зависимости от скорости протекания диффузии в них.
- 4. Сопоставьте состояния вещества с характерными для них расстояниями между молекулами
- 5. Молекулы одного и того же вещества...
- 6. Что такое броуновское движение?

Задание по таблице: заполнить таблицу:

Строение твердых тел, жидкостей и газов

Критерии сравнения	Газ	Жидкость	Твердое тело
Расположение молекул	«XAOC»	«XAOC»	«ПОРЯДОК»
Характер движения молекул			
Взаимодействие молекул			-
Основные свойства			
	,		

Решение качественных задач по данной теме

- 1. С какой целью при складировании полированных стекол между ними прокладывают бумажные ленты?
- 2. Объясните процесс склеивания с точки зрения МКТ?
- 3. Почему броуновское движение заметно лишь у чрезвычайно мелких частиц?
- 4. Почему диффузия жидкостей происходит значительно медленнее, чем диффузия газов?
- 5. При каких условиях может произойти диффузия в твердых телах?
- 6. Почему сахар в горячей воде растворяется быстрее?
- 7. Что представляет собой броуновское движение?

2.1.3. Идеальный газ. Давление газа.

Ответить на вопросы

- 1. Газ, называется идеальным, если...
- 2. При каких условиях газ по своим свойствам близок к идеальному?
- 3. При каких условиях и почему газ не может считаться идеальным?
- 4. Что называют абсолютным нулем температуры?
- 5. Каков физический смысл этого понятия с точки зрения молекулярно-кинетической теории?

- 6. Чему равно давление идеального газа на стенки камеры при абсолютном нуле температуры?
- 7. Определите, чему равна температура абсолютного нуля в градусах Цельсия. Возможно ли охладить тело до температуры абсолютного нуля?

Задание по таблице: заполнить пробелы в таблице

Решение задач

- 1. Определить молярную массу газа, если его масса при 13° С и давлении $1,04\cdot10^{2}$ кПа равна $0,828\cdot10^{-3}$ кг, а объём равен $0,327\cdot10^{-3}$ м³.
- 2. Плотность воздуха при нормальных условиях (p=76 см рт. ст., T =273 K) равна 1,293 кг/м3. Определить плотность воздуха при температуре 87 °C и давлении 60 см рт. ст.
- 3. Определить давление кислорода массой 5 кг, находящегося в сосуде емкостью 30 л, при температуре 27 °C.

2.1.4. Скорости движения молекул и их измерение.

Ответить на вопросы

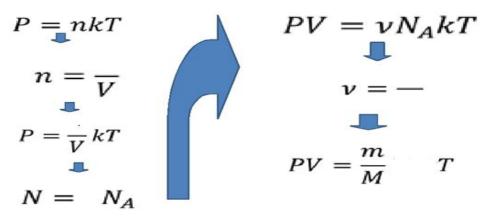
- 1. Средние скорости молекул превышают скорость звука и достигают сотен м/с. Почему же запах духов в комнате из одного угла в другой распространяется достаточно медленно (порядка десятков секунд)?
- 2. Как изменится средняя квадратичная скорость движения молекул при увеличении температуры в 4 раза?
- 3. Какие молекулы в атмосфере движутся быстрее: молекулы азота или молекулы кислорода?
- 4. Во сколько раз средняя квадратичная скорость молекул кислорода меньше, чем у молекул водорода? Температуры одинаковы.

Задание по таблице: заполните пробелы

Зависимость скорости движения молекул от температуры

$$\overline{V} = \sqrt{\frac{m_0}{m_0}} = \sqrt{\frac{m_0}{M}}$$

Решение задач


- 1. При какой температуре средняя кинетическая энергия поступательного движения моле кул газа равна $6.21 \cdot 10^{21}$ Дж? Измерение скоростей молекул газа.
- 2. На сколько процентов увеличится средняя кинетическая энергия молекул газа при увел ичении его температуры от 7 до 35 С?
- 3. Определить среднюю кинетическую энергию молекул одноатомного газа и концентрацию молекул при температуре 290К и давлении 0,8 МПа.
- 4. Как изменится давление идеального газа, если при неизменной концентрации средняя к вадратичная скорость молекул уменьшится в 2 раза?
- **5.** Как изменится давление идеального газа при увеличении концентрации его молекул в 3 раза, если средняя квадратичная скорость молекул остаётся неизменной?

2.1.5. Уравнение состояния идеального газа

Ответить на вопросы

- 1. При каких процессах наблюдается линейная зависимость между двумя макропараметрами идеального газа?
- 2. В одном моле идеального газа отношение произведения давления и объёма к температуре равно...
- 3. Отношение давления идеального газа к его температуре остается постоянным. Тогда, речь идет об...
- 4. Универсальная газовая постоянная измеряется в...

Задание по таблице: восстановите цепочку вывода уравнение состояния идеального

Решение задач: заполнить пустые клетки

газ	р, Па	n, м ⁻³	v^2 , M^2/c^2	т, кг
CO ₂	?	2,7.1020	9.104	7,3·10 ⁻²⁶
O ₂	1,8.105	10 ²⁴	?	5,3.10-26
H_2	4.104	?	2,5·10 ⁵	3,3·10-27

2.1.6. Газовые законы.

Ответить на вопросы

- 1. Закон Гей-Люссака?
- 2. Закон Шарля?
- 3. Закон Бойля-Мариотта?
- 4. Уравнение закона Гей-Люссака.
- 5. Уравнение закона Шарля.
- 6. Уравнение закона Бойля-Мариотта.
- 7. Укажите график изобарного процесса.
- 8. Укажите график изохорного процесса.
- 9. Укажите график изотермического процесса.

Задание по таблице: заполнить пробелы в таблице

Изопроцесс	Изотермический	Изобарный	Изохорный	Адиабатный
Описание				
Закон	Закон Бойля- Мариотта	Закон Гей- Люсса	Закон Шарля	
График изопроцесса				

- 1. Газ изотермически сжали при начальном объеме $0,15~\text{м}^3$ до объема $0,1~\text{м}^3$. Давление при этом повысился на $2\cdot 10^5~\Pi a$. Какой начальное давление газа?
- 2. Стеклянная открытая пробирка объемом 500 см³ содержит воздух нагретый до 227 °C. После того как открытым концом пробирку опустить в воду, то температура воздуха в ней снизится до 27 °C. Определенное количество воды поднялась в пробирку. Найти массу воды, находящейся в пробирке.

- 3. В автомобильной шине находится воздух под давлением $6 \cdot 10^5$ Па при температуре 20 °C. Во время движения автомобиля температура воздуха повысилась до 35 °C. На сколько увеличилось давление воздуха в шине? Объем воздуха V = const.
- 4. В воде всплывает пузырек воздуха. На глубине 3 м ее объем равен 5 мм³. Какой объем пузырька у поверхности воды? Барометрическое давление 760 мм. рт. ст. Процесс считать изотермическим.

2.1.7. Температура и ее измерение.

Ответить на вопросы

- 1. Характеристика состояния теплового равновесия системы, измеряемая в градусах.
- 2. Температурная шкала, не зависящая от рода вещества.
- 3. Абсолютный ноль температуры это
- 4. Температура в кельвинах отличается от температуры в градусах Цельсия на
- 5. Единица температуры по абсолютной шкале, являющаяся основной единицей температуры в СИ.

Задание по таблице: заполните пробелы

Реперная точка	Температурная шкала Цельсия, ^о С	Температурная шкала Фаренгейга, ^О Б	Абсолютная шкала температу р, К
Тройная точка воды (равновесие льда, воды и водяного пара при нормальном давлении 760 мм.рт.ст)			
Температура кипения воды			
Абсолютный нуль температуры			

- 1. Определить давление, при котором 1 м3 газа, имеющий температуру 60° C, содержит $2,4\cdot1026$ молекул.
- 2. При температуре 320 К средняя квадратичная скорость молекулы кислорода 500 м/с. Определить массу молекулы кислорода.
- 3. При какой температуре средняя квадратичная скорость молекул кислорода достигнет 600 м/с?
- 4. До какой температуры нужно нагреть воздух, взятый при 20° C, чтобы его объем удво-ился, если давление останется постоянным?